Analysis 1, Summer 2023

List 1

Sequences, limits of sequences

- 20. If $a_n = (n+2)^3$, give the value of a_3 . $5^3 = 125$
- 21. For the sequence $b_n = n^{-n}$, what are the values b_1 , b_2 , and b_3 ?

$$b_1 = 1$$
, $b_2 = \frac{1}{4} = 0.25$, $b_3 = \frac{1}{27} \approx 0.037037$

22. If $c_n = (1 + \frac{1}{n})^n$, what are the values c_1 , c_2 , and c_3 ? Give exact formulas (by hand) and decimal answers (using a calculator). $c_1 = 2$, $c_2 = \frac{9}{4} = 2.25$,

$$c_3 = \frac{64}{27} \approx 2.3704$$

23. For the sequence $a_n = n^2 - 1$, give a formula for a_{n+1} .

$$(n+1)^2 - 1 = (n^2 + 2n + 1) - 1 = n^2 + 2n$$

24. Consider the sequence

$$a_1 = 2$$

$$a_2 = 22$$

$$a_3 = 222$$

$$a_4 = 2222$$

$$a_n = \underbrace{22...2}_{n \text{ digits}}$$

- (a) Calculate $(10a_1 + 2) a_1$, then $(10a_2 + 2) a_2$, then $(10a_3 + 2) a_3$.
- (b) Find a formula for $(10a_n + 2) a_n$ in terms of n only. $2 \cdot 10^n$
- (c) Find a formula for a_n . $\frac{2}{9}(10^n 1)$

The sequence a_n converges to the real number L if for any $\varepsilon > 0$ there exists an N such that

$$L - \varepsilon < a_n < L + \varepsilon$$
 for all $n > N$.

In this case we say the **limit** of the sequence is L, and we write

$$\lim_{n\to\infty} a_n = L.$$

A sequence that does not converge to any number is said to diverge.

- 25. (a) For which positive integers n is $4 \frac{1}{100} < \frac{8n}{2n+9} < 4 + \frac{1}{100}$?
 - (b) For which positive integers n is $\frac{8n}{2n+9} = 4$? None!
 - (c) Is it true that $\lim_{n\to\infty} \frac{8n}{2n+9} = 4$? Yes

26. Calculate
$$\lim_{n\to\infty} \frac{3n^2 + n + \sqrt{n}}{5n^2} = \boxed{\frac{3}{5}}$$

- 27. Determine whether each sequence converges or diverges.
 - (a) n^n diverges
 - (b) $\frac{n}{n+1}$ converges
 - (c) $(-1)^n$ diverges
 - $\not \simeq$ (d) $\sin(3n)$ diverges
 - (e) $\sin(\pi n)$ converges because the sequence is $0, 0, 0, 0, \dots$
 - (f) $\frac{(-1)^{n+1}}{n^n}$ converges Specifically, this converges to 0.

We say a_n diverges to infinity and write $\lim_{n\to\infty} a_n = \infty$ if for any M > 0 there exist an N such that

$$a_n > M$$
 for all $n > N$.

Similarly, we write $\lim_{n\to\infty} a_n = -\infty$ if for any M>0 there exist an N such that $a_n < -M$ for all n>N.

28. Find the following limits if they exist.

(a)
$$\lim_{n \to \infty} \frac{n+13}{n^2} = \boxed{0}$$

(b)
$$\lim_{n \to \infty} \frac{(n+5)(n-2)}{n^2 - 6n + 7} = \boxed{1}$$

(c)
$$\lim_{n \to \infty} \frac{n^2}{n+13} = \boxed{\infty}$$

(d)
$$\lim_{n \to \infty} -2^n = \boxed{-\infty}$$

(e)
$$\lim_{n\to\infty} (-2)^n$$
 doesn't exist

(f)
$$\lim_{n \to \infty} 2^{-n} = \boxed{0}$$

$$\langle g \rangle \lim_{n \to \infty} 2^{1/n} = \boxed{1}$$

29. Find
$$\lim_{n \to \infty} \left((9\sqrt{n} + \frac{1}{\sqrt{n}})^2 - 81n \right) = \boxed{18}$$

 $\stackrel{\checkmark}{\bowtie}$ 30. Find $\lim_{n\to\infty} n\cdot (2^{1/n}-1)$. The $\stackrel{\checkmark}{\bowtie}$ means that this task is harder than what is normally expected in this course. $\boxed{\ln(2)}$

31. (a) Simplify the formula
$$\frac{\left(\sqrt{n} - \sqrt{n-1}\right)\left(\sqrt{n} + \sqrt{n-1}\right)}{\sqrt{n} + \sqrt{n-1}} = \boxed{\frac{1}{\sqrt{n} + \sqrt{n-1}}}$$

(b) Find
$$\lim_{n\to\infty} \sqrt{n} - \sqrt{n-1} = \lim_{n\to\infty} \frac{1}{\sqrt{n} + \sqrt{n-1}} = \boxed{0}$$

32. Use the Squeeze Theorem with
$$\frac{-1}{n} \leq \frac{\cos(n)}{n} \leq \frac{1}{n}$$
 to find $\lim_{n \to \infty} \frac{\cos(n)}{n}$.

$$\lim_{n\to\infty}\frac{-1}{n}=0$$
 and $\lim_{n\to\infty}\frac{1}{n}=0$, so by Squeeze Theorem we have $\lim_{n\to\infty}\frac{\cos(n)}{n}=\boxed{0}$.

$$\stackrel{\wedge}{\approx} 33. \text{ Use the fact that } \left(1 - \frac{1}{\sqrt{n}}\right)^n \leq \frac{1}{n} \text{ to find } \lim_{n \to \infty} (1/n)^{1/n}.$$

We need an inequality involving $(1/n)^{1/n}$, but the right side of $(1 - \frac{1}{\sqrt{n}})^n \le \frac{1}{n}$ is just (1/n). Raising both sides of the equation to the power 1/n gives

$$1 - \frac{1}{\sqrt{n}} \le \left(\frac{1}{n}\right)^{1/n}.$$

The Squeeze Theorem requires two inequalities. The left-hand side now has limit

$$\lim_{n \to \infty} 1 - \frac{1}{\sqrt{n}} = 1 - 0 = 1,$$

so another inequality involving a limit of 1 would be good. In fact,

$$\left(\frac{1}{n}\right)^{1/n} \le 1$$

is enough, and it is true because $\frac{1}{n} \leq 1^n$ is true for all $n \geq 1$ (this is just $\frac{1}{n} \leq 1$). We can now use the Squeeze Theorem:

$$1 - \frac{1}{\sqrt{n}} \le \left(\frac{1}{n}\right)^{1/n} \le 1$$

$$\lim_{n \to \infty} 1 - \frac{1}{\sqrt{n}} \le \lim_{n \to \infty} \left(\frac{1}{n}\right)^{1/n} \le \lim_{n \to \infty} 1$$

$$1 \le \lim_{n \to \infty} \left(\frac{1}{n}\right)^{1/n} \le 1$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right)^{1/n} = \boxed{1}$$

34. (a) The definition of the number "0.385" is

$$3 \cdot 10^{-1} + 8 \cdot 10^{-2} + 5 \cdot 10^{-2}$$

Write this number as a fraction (or an integer, if possible). $\frac{385}{1000}$ or $\frac{77}{200}$

(b) The definition of the number "0.2222..." is the *limit* of the sequence

$$S_1 = 0.2$$

 $S_2 = 0.22$
 $S_3 = 0.222$
 $S_4 = 0.2222$
 $S_n = 0.22...2$
 $S_n = 0.22...2$

Write this number as a fraction (or an integer, if possible). Hint: See Task 24(c).

$$S_n = \frac{a_n \text{ from Task } 24(c)}{10^n} = \frac{\frac{2}{9}(10^n - 1)}{10^n} = \frac{2}{9}(1 - 10^{-n}).$$
Therefore $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{2}{9}(1 - 10^{-n}) = \boxed{\frac{2}{9}}$

(c) The definition of the number "0.9999..." is the limit of the sequence

$$S_n = 0.\underbrace{99...9}_{n \text{ digits}}.$$

Write this number as a fraction (or an integer, if possible).

$$S_n = 1 - 10^{-n}$$
, so $\lim_{n \to \infty} S_n = \boxed{1}$