List 1

Sequences, limits of sequences
20. If $a_{n}=(n+2)^{3}$, give the value of $a_{3} \cdot 5^{3}=125$
21. For the sequence $b_{n}=n^{-n}$, what are the values b_{1}, b_{2}, and b_{3} ?

$$
b_{1}=1, \quad b_{2}=\frac{1}{4}=0.25, \quad b_{3}=\frac{1}{27} \approx 0.037037
$$

22. If $c_{n}=\left(1+\frac{1}{n}\right)^{n}$, what are the values c_{1}, c_{2}, and c_{3} ? Give exact formulas (by hand) and decimal answers (using a calculator). $c_{1}=2, c_{2}=\frac{9}{4}=2.25$, $c_{3}=\frac{64}{27} \approx 2.3704$
23. For the sequence $a_{n}=n^{2}-1$, give a formula for a_{n+1}.
$(n+1)^{2}-1=\left(n^{2}+2 n+1\right)-1=n^{2}+2 n$
24. Consider the sequence

$$
\begin{aligned}
a_{1} & =2 \\
a_{2} & =22 \\
a_{3} & =222 \\
a_{4} & =2222 \\
a_{n} & =\underbrace{22 \ldots 2}_{n \text { digits }}
\end{aligned}
$$

(a) Calculate $\left(10 a_{1}+2\right)-a_{1}$, then $\left(10 a_{2}+2\right)-a_{2}$, then $\left(10 a_{3}+2\right)-a_{3}$. 20, 200, 2000
(b) Find a formula for $\left(10 a_{n}+2\right)-a_{n}$ in terms of n only. $2 \cdot 10^{n}$
(c) Find a formula for $a_{n} \cdot \frac{2}{9}\left(10^{n}-1\right)$

The sequence a_{n} converges to the real number L if for any $\varepsilon>0$ there exists an N such that

$$
L-\varepsilon<a_{n}<L+\varepsilon \quad \text { for all } n>N .
$$

In this case we say the limit of the sequence is L, and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

A sequence that does not converge to any number is said to diverge.
25. (a) For which positive integers n is $4-\frac{1}{100}<\frac{8 n}{2 n+9}<4+\frac{1}{100}$? $n \geq 1796$
(b) For which positive integers n is $\frac{8 n}{2 n+9}=4$? None!
(c) Is it true that $\lim _{n \rightarrow \infty} \frac{8 n}{2 n+9}=4$? Yes
26. Calculate $\lim _{n \rightarrow \infty} \frac{3 n^{2}+n+\sqrt{n}}{5 n^{2}}=\frac{3}{5}$
27. Determine whether each sequence converges or diverges.
(a) n^{n} diverges
(b) $\frac{n}{n+1}$ converges
(c) $(-1)^{n}$ diverges
$\hat{z}(\mathrm{~d}) \sin (3 n)$ diverges
(e) $\sin (\pi n)$ converges because the sequence is $0,0,0,0, \ldots$
(f) $\frac{(-1)^{n+1}}{n^{n}}$ converges Specifically, this converges to 0 .

We say a_{n} diverges to infinity and write $\lim _{n \rightarrow \infty} a_{n}=\infty$ if for any $M>0$ there exist an N such that

$$
a_{n}>M \quad \text { for all } n>N .
$$

Similarly, we write $\lim _{n \rightarrow \infty} a_{n}=-\infty$ if for any $M>0$ there exist an N such that $a_{n}<-M \quad$ for all $n>N$.
28. Find the following limits if they exist.
(a) $\lim _{n \rightarrow \infty} \frac{n+13}{n^{2}}=0$
(b) $\lim _{n \rightarrow \infty} \frac{(n+5)(n-2)}{n^{2}-6 n+7}=1$
(c) $\lim _{n \rightarrow \infty} \frac{n^{2}}{n+13}=\infty$
(d) $\lim _{n \rightarrow \infty}-2^{n}=-\infty$
(e) $\lim _{n \rightarrow \infty}(-2)^{n}$ doesn't exist
(f) $\lim _{n \rightarrow \infty} 2^{-n}=0$

A(g) $\lim _{n \rightarrow \infty} 2^{1 / n}=1$
29. Find $\lim _{n \rightarrow \infty}\left(\left(9 \sqrt{n}+\frac{1}{\sqrt{n}}\right)^{2}-81 n\right)=18$
is 30. Find $\lim _{n \rightarrow \infty} n \cdot\left(2^{1 / n}-1\right)$. The is means that this task is harder than what is normally expected in this course. $\ln (2)$
31. (a) Simplify the formula $\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n}+\sqrt{n-1}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}$
(b) Find $\lim _{n \rightarrow \infty} \sqrt{n}-\sqrt{n-1}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+\sqrt{n-1}}=0$
32. Use the Squeeze Theorem with $\frac{-1}{n} \leq \frac{\cos (n)}{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}$. $\lim _{n \rightarrow \infty} \frac{-1}{n}=0$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, so by Squeeze Theorem we have $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}=0$.
33. Use the fact that $\left(1-\frac{1}{\sqrt{n}}\right)^{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty}(1 / n)^{1 / n}$.

We need an inequality involving $(1 / n)^{1 / n}$, but the right side of $\left(1-\frac{1}{\sqrt{n}}\right)^{n} \leq \frac{1}{n}$ is just $(1 / n)$. Raising both sides of the equation to the power $1 / n$ gives

$$
1-\frac{1}{\sqrt{n}} \leq\left(\frac{1}{n}\right)^{1 / n}
$$

The Squeeze Theorem requires two inequalities. The left-hand side now has limit

$$
\lim _{n \rightarrow \infty} 1-\frac{1}{\sqrt{n}}=1-0=1,
$$

so another inequality involving a limit of 1 would be good. In fact,

$$
\left(\frac{1}{n}\right)^{1 / n} \leq 1
$$

is enough, and it is true because $\frac{1}{n} \leq 1^{n}$ is true for all $n \geq 1$ (this is just $\frac{1}{n} \leq 1$). We can now use the Squeeze Theorem:

$$
\begin{aligned}
1-\frac{1}{\sqrt{n}} \leq\left(\frac{1}{n}\right)^{1 / n} & \leq 1 \\
\lim _{n \rightarrow \infty} 1-\frac{1}{\sqrt{n}} \leq \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n} & \leq \lim _{n \rightarrow \infty} 1 \\
1 \leq \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n} & \leq 1 \\
\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n} & =1
\end{aligned}
$$

34. (a) The definition of the number " 0.385 " is

$$
3 \cdot 10^{-1}+8 \cdot 10^{-2}+5 \cdot 10^{-2}
$$

Write this number as a fraction (or an integer, if possible). $\frac{385}{1000}$ or $\frac{77}{200}$
(b) The definition of the number " $0.2222 \ldots$ ". is the limit of the sequence

$$
\begin{aligned}
& S_{1}=0.2 \\
& S_{2}=0.22 \\
& S_{3}=0.222 \\
& S_{4}=0.2222 \\
& S_{n}=0 . \underbrace{22 \ldots 2}_{n \text { digits }}
\end{aligned}
$$

Write this number as a fraction (or an integer, if possible).
Hint: See Task 24(c).
$S_{n}=\frac{a_{n} \text { from Task 24(c) }}{10^{n}}=\frac{\frac{2}{9}\left(10^{n}-1\right)}{10^{n}}=\frac{2}{9}\left(1-10^{-n}\right)$.
Therefore $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{2}{9}\left(1-10^{-n}\right)=\frac{2}{9}$
(c) The definition of the number "0.9999..." is the limit of the sequence

$$
S_{n}=0 . \underbrace{99 \ldots 9}_{n \text { digits }} .
$$

Write this number as a fraction (or an integer, if possible).
$S_{n}=1-10^{-n}$, so $\lim _{n \rightarrow \infty} S_{n}=1$

